We combute hi th number to elemnts in the i-th equidistant subdivision of the interval [min L, max L] into n parts
i1 : M=(randomChainComplex({20,20},{20},ZeroMean=>true)).dd_1;
40 40
o1 : Matrix ZZ <--- ZZ
|
i2 : (svds,U,Vt)=SVD(M**RR_53); |
i3 : (entries matrix {svds})_0/log
o3 = {6.37106, 6.31472, 6.27245, 6.10348, 6.02102, 5.98252, 5.92934, 5.83927,
------------------------------------------------------------------------
5.72509, 5.63923, 5.51957, 5.51441, 5.45378, 5.3237, 5.14787, 5.11063,
------------------------------------------------------------------------
4.80679, 4.71988, 4.56427, 3.9834, -29.8072, -29.9987, -30.1175,
------------------------------------------------------------------------
-30.2686, -30.2883, -30.4297, -30.4939, -30.7403, -30.8686, -30.8958,
------------------------------------------------------------------------
-30.9824, -31.0054, -31.1686, -31.3124, -31.4923, -31.6043, -31.9271,
------------------------------------------------------------------------
-32.3009, -33.1112, -33.439}
o3 : List
|
i4 : maximalEntry M o4 = 138 o4 : RR (of precision 53) |
i5 : histogram(svds/log,10)
o5 = {20, 0, 0, 0, 0, 0, 0, 0, 0, 20}
o5 : List
|
i6 : histogram(svds_{0..19}/log,10)
o6 = {1, 0, 1, 2, 2, 1, 4, 2, 4, 3}
o6 : List
|
i7 : histogram(svds_{20..39}/log,10)
o7 = {2, 0, 0, 1, 1, 3, 3, 3, 4, 3}
o7 : List
|