Given the ideal of a canonical curve on a normalized scroll, the function computes the ideal of the curve in terms of generators on the scroll.
i1 : (g,k,n) = (8,5,1000); |
i2 : Ican = canCurveWithFixedScroll(g,k,n);
ZZ
o2 : Ideal of ----[t , t , t , t , t , t , t , t ]
1009 0 1 2 3 4 5 6 7
|
i3 : Jcan = curveOnScroll(Ican,g,k);
ZZ
o3 : Ideal of ----[pp , pp , pp , pp , v, w]
1009 0 1 2 3
|
i4 : betti Jcan
0 1
o4 = total: 1 5
0: 1 .
1: . .
2: . 4
3: . 1
o4 : BettiTally
|