next up previous contents index
Next: Separation theorems Up: Convexity Previous: Matrix extreme points   Contents   Index

$ C^*$-convexity

Let $ A$ be a unital $ C^*$-algebra. A subset $ K\subset A$ is a $ C^*$-convex set, if

$\displaystyle \sum_{i=1}^{n} a_i^*x_ia_i \in K
$

for all $ x_i\in K$ and $ a_i\in A$ such that $ \sum_{i=1}^{n} a_i^*a_i = \mathrm{1\!\!\!\:l}$. The sum $ \sum_{i=1}^{n} a_i^*x_ia_i$ is called a $ C^*$-convex combination.

A subset $ K\subset A$ is a $ C^*$-absolutely convex set, if

$\displaystyle \sum_{i=1}^{n} a_i^*x_ib_i \in K
$

for all $ x_i\in K$ and $ a_i$, $ b_i\in A$ such that $ \sum_{i=1}^{n} a_i^*a_i$, $ \sum_{i=1}^{n} b_i^*b_i \leq \mathrm{1\!\!\!\:l}$.

In particular $ C^*$-convex sets are convex and $ C^*$-absolutely convex sets are absolutely convex.

Example: Let $ \H$ be a Hilbert space and $ T\in B(\H)$. The n-th matrix range of $ T$ is the set

$\displaystyle W(T)_n :=\{\varphi(T)\vert\varphi:B(\H)\rightarrow M_n$ completely positive and unital$\displaystyle \}.
$

$ W(T)_n$ is a compact and $ C^*$-convex subset of $ M_n$ and to every compact and $ C^*$-convex subset $ K\subset M_n$ there exist a separable Hilbert space $ \H$ and $ S\in B(\H)$ such that $ K=W(S)_n$ ([LP81, Prop. 31]).

The sets

$\displaystyle \mathrm{Ball}(B(\H))=\{x\in B(\H)\vert\Vert x\Vert\leq 1\}$    and    $\displaystyle P=\{x\in B(\H)\vert\leq x\leq \mathrm{1\!\!\!\:l}\}
$

are $ C^*$-convex und wot-compact subsets of $ B(\H)$. $ \mathrm{Ball}(B(\H))$ is also $ C^*$-absolutely convex.

Loebl and Paulsen introduced $ C^*$-convex sets in [LP81]. At the beginning of the nineties Farenick and Morenz studied $ C^*$-convex subsets of $ M_n$ ([Far92],[FM93]). Eventually Morenz succeeded in proving an analogue of the Krein-Milman theorem for a compact $ C^*$-convex subset of $ M_n$ ([Mor94]). At the end of the nineties Magajna generalized the notion of $ C^*$-convex sets to the setting of operator modules and proved some separation theorems [Mag00, Th. 1.1] and also an analogue of the Krein-Milman theorem [Mag98, Th. 1.1].



Subsections
next up previous contents index
Next: Separation theorems Up: Convexity Previous: Matrix extreme points   Contents   Index
Prof. Gerd Wittstock 2001-01-07