next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
KoszulDivisorOnPic14M8 :: getCurveOnKoszulDivisor

getCurveOnKoszulDivisor -- get a curve of genus 8 and degree 14 in P^6 on the Koszul divisor with syzygy of rank rk

Synopsis

Description

The construction is based on Mukai’s unirational description of M8,8 of the moduli space of genus 8 with 8 marked points (see [Mu]). Over finite ground fields on can find curves with extra syzygies by searching. The example below shows that there exisits curves on the Koszul divisor with full rank extra syzygies.
i1 : kk=ZZ/19;R=kk[x_0..x_6]

o2 = R

o2 : PolynomialRing
i3 : setRandomSeed("getDesiredFCurveFast");
i4 : time I=getCurveOnKoszulDivisor(7,R);
     -- used 5.89941 seconds

o4 : Ideal of R
i5 : betti (fI= res I)

            0 1  2  3  4 5
o5 = total: 1 8 36 56 35 8
         0: 1 .  .  .  . .
         1: . 7  1  .  . .
         2: . 1 35 56 35 8

o5 : BettiTally
i6 : R1=kk[x_0..x_6,MonomialOrder=>Eliminate 3];
i7 : R2=kk[x_3..x_6] -- coordinate ring of P^3

o7 = R2

o7 : PolynomialRing
i8 : I1=selectInSubring(1, gens gb sub(I,R1));

              1        14
o8 : Matrix R1  <--- R1
i9 : I2=ideal mingens ideal sub(I1,R2); -- the curve projected into P^3

o9 : Ideal of R2
i10 : betti(fI2= res I2)

             0 1  2 3
o10 = total: 1 8 14 7
          0: 1 .  . .
          1: . .  . .
          2: . .  . .
          3: . .  . .
          4: . .  . .
          5: . 7  . .
          6: . 1 14 7

o10 : BettiTally
i11 : degree I2==14, genus I2 ==8

o11 = (true, true)

o11 : Sequence
i12 : singI2=I2+minors(2,jacobian I2);

o12 : Ideal of R2
i13 : dim singI2 == 0 -- => I defines a smooth curve

o13 = true
i14 : s=ideal mingens ideal (fI.dd_2)_{0}

o14 = ideal (x , x , x , x , x , x , x )
              6   5   4   3   2   1   0

o14 : Ideal of R
i15 : dim s == 0 -- => the extra syzygy has full rank 7

o15 = true

Ways to use getCurveOnKoszulDivisor :