next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
NodalCurves :: syzygiesOfPrymCanonicalNodalCurve

syzygiesOfPrymCanonicalNodalCurve -- compute syzygies of a random Prym canonical nodal of genus g and level n

Synopsis

Description

In Farkas, Ludwig [2008] it is conjectured that a general smooth Prym canonical curve of even genus g ≥6 has a pure resolution, i.e. C embedded by |KC ⊗L| into Pg-2 has a pure resolution, where L is an n-torsion Line bundle. With this function the conjecture can be verified for curve of small g (and levels n) by computing the syzgies of random g-nodal Prym canonical rational curve over a finite ground field and arguing by with semi-continuity of Betti numbers.

It is interesting that the verification fails along this approach for (g,n)=(8,2) and (16,2), but worked fine in all other cases.
i1 : g=8

o1 = 8
i2 : syzygiesOfPrymCanonicalNodalCurve(8,3,Printing=>true);
expected syzygies:
       0 1  2  3  4 5
total: 1 7 35 56 35 8
    0: 1 .  .  .  . .
    1: . 7  .  .  . .
    2: . . 35 56 35 8
first strand in the example
       0 1
total: 1 7
    0: 1 .
    1: . 7
i3 : syzygiesOfPrymCanonicalNodalCurve(8,2,Printing=>true);
warning: clearing value of symbol t to allow access to subscripted variables based on it
       : debug with expression   debug 5504   or with command line option   --debug 5504
expected syzygies:
       0 1  2  3  4 5
total: 1 7 35 56 35 8
    0: 1 .  .  .  . .
    1: . 7  .  .  . .
    2: . . 35 56 35 8
first strand in the example
       0 1 2
total: 1 8 1
    0: 1 . .
    1: . 7 1
    2: . 1 .
Why the case of genus 8 and 2 torsion does not have expected syzygies is mysterious is to us:
i4 : (L,I)=randomPrymCanonicalNodalCurve(8,2);
warning: clearing value of symbol t to allow access to subscripted variables based on it
       : debug with expression   debug 5504   or with command line option   --debug 5504
i5 : S=L_7

o5 = S

o5 : PolynomialRing
i6 : betti(fI=res I)

            0 1  2  3  4 5
o6 = total: 1 8 36 56 35 8
         0: 1 .  .  .  . .
         1: . 7  1  .  . .
         2: . 1 35 56 35 8

o6 : BettiTally
i7 : pt=fI.dd_2_{0};

             8       1
o7 : Matrix S  <--- S
i8 : CE1=ideal((fI.dd_1)*syz transpose (syz transpose pt)_{0,1});

o8 : Ideal of S
i9 : CE=saturate(CE1,ideal pt);

o9 : Ideal of S
i10 : degree CE

o10 = 21
i11 : betti res CE

             0 1  2  3 4 5
o11 = total: 1 7 22 22 7 1
          0: 1 .  .  . . .
          1: . 6  1  . . .
          2: . 1 21 21 1 .
          3: . .  .  1 6 .
          4: . .  .  . . 1

o11 : BettiTally
i12 : E=CE:I;

o12 : Ideal of S
i13 : betti res E

             0  1  2  3  4 5
o13 = total: 1 14 35 35 14 1
          0: 1  .  .  .  . .
          1: . 14 35 35 14 .
          2: .  .  .  .  . 1

o13 : BettiTally
i14 : dim E == 2, degree E == 7, genus E == 1

o14 = (true, true, true)

o14 : Sequence
i15 : dim ideal pt == 1

o15 = true
i16 : degree (E+I)

o16 = 14
At least in the example, the syzygy scheme of the extra syzygy is a reducible half canonical curve of degree 21, whose second component is an elliptc normal curve of degree 7.

Ways to use syzygiesOfPrymCanonicalNodalCurve :