next up previous contents index
Next: Construction of : Up: Operator Spaces and Completely Previous: -direct sums   Contents   Index

$ \mathit{MIN}$ and $ \mathit{MAX}$

Let $ E$ be a normed space. Among all operator space norms on $ E$ which coincide on the first matrix level with the given norm, there is a greatest and a smallest. The matricially normed spaces given by these are called $ {\mathit{MAX}(E)}$ and $ {\mathit{MIN}(E)}$. They are characterized by the following universal mapping property:14 For a matricially normed space $ X$,

$\displaystyle M_1(\mathit{CB}(\mathit{MAX}(E),X)) = B(E,M_1(X))$

and

$\displaystyle M_1(\mathit{CB}(X,\mathit{MIN}(E))) = B(M_1(X),E)$

holds isometrically.

We have [Ble92a]

$\displaystyle \mathit{MIN}(E)^*$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle \mathit{MAX}(E^*)$,  
$\displaystyle \mathit{MAX}(E)^*$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle \mathit{MIN}(E^*)$.  

For $ {\mathrm{dim}}(E) = \infty$,

$\displaystyle \mathrm{id}_E:\mathit{MIN}(E)\rightarrow \mathit{MAX}(E)$

is not completely bounded[Pau92, Cor. 2.13].15

Subspaces of $ \mathit{MIN}$-spaces are $ \mathit{MIN}$-spaces: For each isometric mapping $ \varphi:E_0\to
E$, the mapping $ \varphi:\mathit{MIN}(E_0)\to\mathit{MIN}(E)$ is completely isometric.

Quotients of $ \mathit{MAX}$-spaces are $ \mathit{MAX}$-spaces: For each quotient mapping $ \varphi:E\to
E_0$, the mapping $ \varphi:\mathit{MAX}(E)\to\mathit{MAX}(E_0)$ is a complete quotient mapping.



Footnotes

... property:14
$ \mathit{MAX}$ is the left adjoint and $ \mathit{MIN}$ the right adjoint of the forgetfull functor which maps an operator space $ X$ to the Banach space $ M_1(X)$.
...Paulsen92.15
Paulsen uses in his proof a false estimation for the projection constant of the finite dimensional Hilbert spaces; the converse estimation is correct [Woj91, p. 120], but here useless. The gap can be filled [Lam97, Thm. 2.2.15] using the famous theorem of Kadets-Snobar: The projection constant of an $ n$-dimensional Banach space is less or equal than $ \sqrt{n}$ [KS71].


Subsections
next up previous contents index
Next: Construction of : Up: Operator Spaces and Completely Previous: -direct sums   Contents   Index
Prof. Gerd Wittstock 2001-01-07