The function returns true if there exists a rational number q such that q*B is the Betti table of some module over a polynomial ring, and false if not
i1 : B=new BettiTally from
{(0, {1}, 1) => 6,
(1, {2}, 2) => 10,
(2, {3}, 3) => 3,
(1, {3}, 3) => 3,
(1, {4}, 4) => 1,
(2, {5}, 5) => 13,
(3, {6}, 6) => 9,
(4, {7}, 7) => 1
}
0 1 2 3 4
o1 = total: 6 14 16 9 1
1: 6 10 3 . .
2: . 3 . . .
3: . 1 13 9 1
o1 : BettiTally
|
i2 : isInBoijSoederbergCone B o2 = true |
i3 : B'=new BettiTally from
{(0, {1}, 1) => 6,
(1, {2}, 2) => 10,
(2, {3}, 3) => 3,
(1, {3}, 3) => 3,
(1, {4}, 4) => 2,
(2, {5}, 5) => 13,
(3, {6}, 6) => 9,
(4, {7}, 7) => 1
}
0 1 2 3 4
o3 = total: 6 15 16 9 1
1: 6 10 3 . .
2: . 3 . . .
3: . 2 13 9 1
o3 : BettiTally
|
i4 : isInBoijSoederbergCone B' o4 = false |