The function returns true if there exists a rational number q such that q*B is the Betti table of some module over a polynomial ring, and false if not
i1 : B=new BettiTally from {(0, {1}, 1) => 6, (1, {2}, 2) => 10, (2, {3}, 3) => 3, (1, {3}, 3) => 3, (1, {4}, 4) => 1, (2, {5}, 5) => 13, (3, {6}, 6) => 9, (4, {7}, 7) => 1 } 0 1 2 3 4 o1 = total: 6 14 16 9 1 1: 6 10 3 . . 2: . 3 . . . 3: . 1 13 9 1 o1 : BettiTally |
i2 : isInBoijSoederbergCone B o2 = true |
i3 : B'=new BettiTally from {(0, {1}, 1) => 6, (1, {2}, 2) => 10, (2, {3}, 3) => 3, (1, {3}, 3) => 3, (1, {4}, 4) => 2, (2, {5}, 5) => 13, (3, {6}, 6) => 9, (4, {7}, 7) => 1 } 0 1 2 3 4 o3 = total: 6 15 16 9 1 1: 6 10 3 . . 2: . 3 . . . 3: . 2 13 9 1 o3 : BettiTally |
i4 : isInBoijSoederbergCone B' o4 = false |