next up previous contents index
Next: Injective operator systems Up: Operator Systems and Completely Previous: Characterization   Contents   Index

Matrix order unit norm

Let $ L$ be an operator system. We define norms by

$\displaystyle \Vert x\Vert _n:=\inf\left\{r\in{\mathbb{R}}\vert \begin{pmatrix}...
...!\:l}_n & x\\  x^* & r\mathrm{1\!\!\!\:l}_n\end{pmatrix}\in M_{2n}(L)_+\right\}$ (1)

for all $ n\in{\mathbb{N}}$ and $ x\in M_n(L)$. With these norms $ L$ becomes an operator space.

If $ \Phi$ is any unital completely positve embedding from $ L$ into some $ B(\H)$ (cf. section [*]) then $ \Vert\Phi^{(n)}(x)\Vert=\Vert x\Vert _n$ for all $ n\in{\mathbb{N}}$ and $ x\in M_n(L)$. This holds because $ \Vert y\Vert\leq 1$ if and only if

$\displaystyle 0\leq\begin{pmatrix}\mathrm{1\!\!\!\:l} & y\\  y^* & \mathrm{1\!\!\!\:l} \end{pmatrix}$

for all $ y\in B(H)$ and all Hilbert spaces $ \H$.

Let $ L$ and $ S$ be operator systems and let $ \psi:L\rightarrow S$ be completely positive. We supply $ L$ and $ S$ with the norms from equation ([*]). Then $ \psi$ is completely bounded and $ \Vert\psi(\mathrm{1\!\!\!\:l})\Vert=\Vert\psi\Vert=\Vert\psi\Vert _{cb}$ (cf. [Pau86, Proposition 3.5]).



Prof. Gerd Wittstock 2001-01-07