next up previous contents index
Next: The column Hilbert space Up: Hilbertian Operator Spaces Previous: The spaces   Contents   Index

The morphisms

The space $ \mathit{CB}(X,Y)$ of completely bounded mappings between two homogeneous hilbertian operator spaces $ X,Y$ enjoys the following properties (cf. [MP95, Prop. 1.2]):

  1. $ (\mathit{CB}(X,Y),\Vert\cdot\Vert _{\mathrm{cb}})$ is a Banach space.
  2. $ \Vert ATB\Vert _{\mathrm{cb}} \leq \Vert A\Vert \Vert T\Vert _{\mathrm{cb}} \Vert B\Vert$ for all $ A$, $ B \in B(\H)$, $ T\in\mathit{CB}(X,Y)$.
  3. $ \Vert T\Vert _{\mathrm{cb}}=\Vert T\Vert$ for all $ T$ with $ {\rm rank}(T)=1$.
Consequently, $ \mathit{CB}(X,Y)$ is a symmetrically normed ideal (s.n. ideal) in the sense of Calkin, Schatten [Sch70] and Gohberg [GK69].

The classical examples for s.n. ideals are the famous Schatten ideals:

$\displaystyle {S_p} := \left\{ T \in B(\H) \left\vert \mbox{ the sequence
of \...
... T
\mbox{ is in } \ell_p \right. \right\}
\quad (1 \leq p < \infty) \mbox{.}
$

Many, but not all s.n. ideals can be represented as spaces of completely bounded maps between suitable homogeneous hilbertian operator spaces.

The first result in this direction was

$\displaystyle \mathit{CB}({\mathcal{R}}_{\H},{\mathcal{C}}_{\H})=S_2(\H)=\mathit{HS}(\H)$

isometrically [ER91, Cor. 4.5].

We have the following characterizations isometrically or only isomorphically ($ \simeq$) [Mat94], [MP95], [Lam97]:

$ \mathit{CB}(\downarrow,\rightarrow)$ $ \mathit{MIN}_{\H}$ $ {\mathcal{C}}_{\H}$ $ \mathit{OH}_{\H}$ $ {\mathcal{R}}_{\H}$ $ \mathit{MAX}_{\H}$
$ \mathit{MIN}_{\H}$ $ B(\H)$ $ \mathit{HS}(\H)$ $ \simeq \mathit{HS}(\H)$ $ \mathit{HS}(\H)$ $ \simeq N(\H)$
$ {\mathcal{C}}_{\H}$ $ B(\H)$ $ B(\H)$ $ S_4(\H)$ $ \mathit{HS}(\H)$ $ \mathit{HS}(\H)$
$ OH_{\H}$ $ B(\H)$ $ S_4(\H)$ $ B(\H)$ $ S_4(\H)$ $ \simeq \mathit{HS}(\H)$
$ {\mathcal{R}}_{\H}$ $ B(\H)$ $ \mathit{HS}(\H)$ $ S_4(\H)$ $ B(\H)$ $ \mathit{HS}(\H)$
$ \mathit{MAX}_{\H}$ $ B(\H)$ $ B(\H)$ $ B(\H)$ $ B(\H)$ $ B(\H)$

As a unique completely isometric isomorphism, we get $ \mathit{CB}({\mathcal{C}}_\H) \stackrel{\mathrm{cb}}{=}B(\H)$ (cf. [Ble95, Thm. 3.4]). The result

$\displaystyle \mathit{CB}(\mathit{MIN}_{\H},\mathit{MAX}_{\H}) \simeq N(\H) $

is of special interest. Here, we have a new quite natural norm on the nuclear operators, which is not equal to the canonical one.

Even in the finite dimensional case, we only know

$\displaystyle \frac{n}{2} \leq \Vert\mathrm{id}:\mathit{MIN}(\ell_2^n) \rightarrow \mathit{MAX}(\ell_2^n) \Vert _{\mathrm{cb}}
\leq \frac{n}{\sqrt{2}} $

[Pau92, Thm. 2.16]. To compute the exact constant is still an open problem. Paulsen conjectured that the upper bound is sharp [Pau92, p. 121].

Let $ E$ be a Banach space and $ \H$ a Hilbert space. An operator $ T \in B(E,\H)$ is completely bounded from $ \mathit{MIN}(E)$ to $ {\mathcal{C}}_\H$ , if and only if $ T$ is 2-summing [Pie67] from $ E$ to $ \H$ (cf. [ER91, Thm. 5.7]):

$\displaystyle M_1(\mathit{CB}(\mathit{MIN}(E),{\mathcal{C}}_\H)) = {\Pi_2}(E,\H) $

with $ \Vert T\Vert _\mathrm{cb}=$ $ {\pi_2}(T)$.


next up previous contents index
Next: The column Hilbert space Up: Hilbertian Operator Spaces Previous: The spaces   Contents   Index
Prof. Gerd Wittstock 2001-01-07