next up previous contents index
Next: Module tensor products Up: Completely bounded bilinear mappings Previous: Complete boundedness   Contents   Index


Representation

Completely bounded bilinear forms were first studied on C$ ^*$-algebras $ A$, $ B$ [EK87]. For a bilinear form $ \Phi : A \times B \rightarrow {\mathbb{C}}$ the following properties are equivalent:
(1)
$ \Phi$ is completely bounded.
(2)
There is a constant $ c$ such that

$\displaystyle \mbox{$
\vert\sum_{j=1}^l \Phi(a_j, b_j)\vert
\leq
c\, \Ver...
...a_j a_j^*\Vert^\frac{1}{2}
\Vert\sum_{j=1}^l b_j^* b_j\Vert^\frac{1}{2}
$}$

for all $ l \in {\mathbb{N}}$, $ a_j \in A$, $ b_j \in B$.
(3)
There is a constant $ c$ and states $ \omega \in S(A)$, $ \rho \in S(B)$ such that

$\displaystyle \mbox{$
\vert \Phi(a, b)\vert
\leq
c\, \omega(a a^*)^\frac{1}{2}
\rho(b^* b)^\frac{1}{2}
$}$

for all $ a\in A$, $ b \in B$.
(4)
There exist $ ^*$-representations $ \pi_\omega : A \rightarrow B(\H_\omega)$ and $ \pi_\rho : A \rightarrow B(\H_\rho)$ with cyclic vectors $ \xi_\omega \in \H_\omega$, $ \xi_\rho \in \H_\rho$ and an operator $ T \in B(\H_\omega, \H_\rho)$ such that $ \Phi(a,b)
= \langle T \pi_\omega(a) \xi_\omega, \pi_\rho(b) \xi_\rho \rangle$ for all $ a\in A$, $ b \in B$.
One can choose $ c = \Vert T\Vert = \Vert\Phi\Vert _\mathrm{cb}$ and $ \Vert\xi_\omega\Vert = \Vert\xi_\rho\Vert = 1$.52

Footnotes

....52
For further references see [CS89, Sec. 4].


Prof. Gerd Wittstock 2001-01-07