next up previous contents index
Next: Interpolation Up: Tensor products Previous: Joint amplification of a   Contents   Index

Tensor matrix multiplication

The definition of the completely bounded bilinear maps as well as the Haagerup tensor product relies on the tensor matrix multiplication [Eff87]

   $\displaystyle \mbox{$
x \odot y = [x_{ij}] \odot [y_{jk}]
:=
\left[\sum_{j=1}^l x_{ij} \otimes y_{jk}\right] \in M_{n}(X \otimes Y)
$}$$\displaystyle $

of operator matrices $ x = [x_{ij}] \in M_{n,l}(X)$, $ y = [y_{jk}]\in M_{l,n}(Y)$.

The amplification of the bilinear mapping $ \otimes : X \times Y \rightarrow X \otimes Y$ is given by

$\displaystyle \otimes^{(n,l)} = \odot :
M_{n,l}(X) \times M_{l,n}(Y) \rightarrow M_n(X \otimes Y).
$

For scalar matrices $ \alpha, \gamma \in M_n$, $ \beta \in M_l$ we have

$\displaystyle (\alpha x \beta) \odot (y \gamma) = \alpha (x \odot (\beta y)) \gamma.
$

We use the short hand notation $ \alpha x \beta \odot y \gamma$.

For linear maps

$\displaystyle \Phi = [\Phi_{ij}] : \, x$ $\displaystyle \rightarrow$ $\displaystyle M_{n,l}(V)$   ,  
$\displaystyle \Psi = [\Phi_{jk}] : \, x$ $\displaystyle \rightarrow$ $\displaystyle M_{l,n}(W)$  

we denote by $ \Phi \odot \Psi$ the mapping

$\displaystyle \Phi \odot \Psi =
\left[\sum_{j=1}^l \Phi_{ij} \otimes \Psi_{jk}\right] :
X \otimes Y \rightarrow M_{n}(V \otimes W),
$

$\displaystyle \Phi \odot \Psi : x \otimes y \mapsto
\left[\sum_{j=1}^l \Phi_{ij}(x) \otimes \Psi_{jk}(y) \right].
$

We then have

$\displaystyle (\Phi \odot \Psi)^{(p)}(x \odot y) =
(\Phi^{(p,q)}(x)) \odot (\Psi^{(q,p)}(y))
$

for $ x \in M_{p,q}(X)$, $ y \in M_{q,p}(Y)$. Let $ \otimes_\alpha $ be an operator space tensor product . We define the tensor matrix multiplication $ \odot_\alpha$ of operator matrices $ S = [S_{i,j}] \in M_{n,l}(\mathit{CB}(X_1,X_2))$, $ T = [T_{k,l}] \in M_{l,n}(\mathit{CB}(Y_1,Y_2))$ of completely bounded maps by setting

$\displaystyle S \odot_\alpha T = \left[\sum_{j=1}^l S_{ij} \otimes_\alpha T_{jk}\right]
\in M_n(\mathit{CB}(X_1 \otimes_\alpha Y_1, X_2 \otimes_\alpha Y_2)).
$


next up previous contents index
Next: Interpolation Up: Tensor products Previous: Joint amplification of a   Contents   Index
Prof. Gerd Wittstock 2001-01-07