next up previous contents index
Next: Interpolation Up: Interpolation Previous: Interpolation   Contents   Index

Intersection and sum

Let $ X$ and $ Y$ be operator spaces such that $ M_1(X)$ and $ M_1(Y)$ are embedded in a Hausdorff topological vector space. $ M_n(X \cap Y) $ is given a norm via $ M_n(X \cap Y) := M_n(X) \cap M_n(Y)$. So we have:

$\displaystyle { \left\Norm [x_{ij}] \right\Norm }_{M_n(X \cap Y)}
= \max \left...
...\right\Norm }_{M_n(X)} , { \left\Norm [x_{ij}] \right\Norm }_{M_n(Y)}
\right\}$   .$\displaystyle $

The operator space $ X \cap Y$ is called the intersection of $ X$ and $ Y$.
For operator spaces75 $ X$ and $ Y$, by embedding $ X \oplus Y$ in $ (X^* \oplus_\infty Y^*)^*$ we obtain an operator space structure $ X \oplus_1 Y$. We write $ \diamondsuit := \left\{(x,-x)\right\} \subset X \oplus_1 Y$. The quotient operator space $ \left(X \oplus_1 Y\right) / \diamondsuit$ is called the sum of $ X$ and $ Y$ and is denoted by $ X+Y$. We have

$\displaystyle { \left\Norm [x_{ij}] \right\Norm }_{M_n(X+Y)}
= \inf_{[x_{ij}] ...
...{ \left\Norm [\left(x_{ij_X},x_{ij_Y}\right)] \right\Norm }_{M_n(X \oplus_1 Y)}$   .



Footnotes

... spaces75
Let $ E$, $ F$ be Banach spaces. Then we have their 1-direct sum $ E \oplus_1 F $ with the norm

$\displaystyle { \left\Norm (x_E,x_F) \right\Norm }_{} = { \left\Norm x_E \right\Norm }_{} + { \left\Norm x_F \right\Norm }_{}
$

and their sum $ E + F$ with the quotient norm

$\displaystyle { \left\Norm x \right\Norm }_{E+F} = \inf_{x = x_E + x_F}
\left( ...
...eft\Norm x_E \right\Norm }_{E} + { \left\Norm x_F \right\Norm }_{F} \right) .
$



Prof. Gerd Wittstock 2001-01-07