next up previous contents index
Next: cross norms Up: Tensor Products Previous: Tensor Products   Contents   Index


Operator space tensor products

An operator space tensor product is the completion of the algebraic tensor product with respect to an operator space tensor norm.

An operator space tensor norm $ \Vert\cdot\Vert _\alpha $ is defined for each pair $ (X,Y) $ of operator spaces and endows their algebraic tensor product $ X \otimes Y $ with the structure of an matrix normed space $ (X \otimes Y, \Vert\cdot\Vert _\alpha) $ thuch that the following two properties [*] and [*] [BP91, Def. 5.9]. hold.

The completion is called the $ \alpha $-operator space tensor product of $ X$ and $ Y$ and is denoted by $ X \otimes_\alpha Y $.

1.
For the complex numbers holds

$\displaystyle {\mathbb{C}}\otimes_\alpha {\mathbb{C}}= {\mathbb{C}}.
$

2.
For all $ S \in \mathit{CB}(X_1,X_2) $ and $ T \in \mathit{CB}(Y_1,Y_2) $ the operator $ S \otimes T : X_1 \otimes Y_1 \rightarrow X_2 \otimes Y_2 $ has a continuous extension

$\displaystyle S \otimes_\alpha T \in \mathit{CB}(X_1 \otimes_\alpha Y_1, X_2 \otimes_\alpha Y_2).
$

The bilinear mapping
$\displaystyle \otimes_\alpha : \mathit{CB}(X_1,X_2) \times \mathit{CB}(Y_1,Y_2)$ $\displaystyle \rightarrow$ $\displaystyle \mathit{CB}(X_1 \otimes_\alpha Y_1, X_2 \otimes _\alpha Y_2)$  
$\displaystyle (S,T)$ $\displaystyle \mapsto$ $\displaystyle S \otimes_\alpha T$  

is jointly completely contractive .
30
Property [*] may be replaced by the assumptions [*] and [*].31
3.
An operator space tensor product $ \otimes_\alpha $ is functorial: For all $ S \in \mathit{CB}(X_1,X_2) $ and $ T \in \mathit{CB}(Y_1,Y_2) $ the operator $ S \otimes T : X_1 \otimes Y_1 \rightarrow X_2 \otimes Y_2 $ has a continuous extension

$\displaystyle S \otimes_\alpha T \in \mathit{CB}(X_1 \otimes_\alpha Y_1, X_2 \otimes_\alpha Y_2),
$

and

$\displaystyle \Vert S \otimes_\alpha T \Vert _\mathrm{cb}\leq \Vert S\Vert _\mathrm{cb}\Vert T\Vert _\mathrm{cb}.
$

Remark: This is indeed an equality $ \Vert S \otimes_\alpha T \Vert _\mathrm{cb}=\Vert S\Vert _\mathrm{cb}\Vert T\Vert _\mathrm{cb}$.
4.
The algebraic shuffle isomorphism $ M_p(X) \otimes M_q(Y) \cong M_{pq}(X \otimes Y) $ has a continuous extension to a complete contraction:

$\displaystyle {\mathbb{M}}_p(X) \otimes_\alpha {\mathbb{M}}_q(Y)
\rightarrow
{\mathbb{M}}_{pq}(X \otimes_\alpha Y).
$

This complete contraction is called the shuffle map of the $ \alpha $-operator space tensor product.

Condition [*] is equivalent to the following two conditions: The shuffle mappings

$\displaystyle {\mathbb{M}}_p(X) \otimes_\alpha Y$ $\displaystyle \rightarrow$ $\displaystyle {\mathbb{M}}_p(X \otimes_\alpha Y),$  
$\displaystyle X \otimes_\alpha {\mathbb{M}}_q(Y)$ $\displaystyle \rightarrow$ $\displaystyle {\mathbb{M}}_q(X \otimes_\alpha Y)$  

are completely contractive.

Operator space tensor producte may have further special properties:

An operator space tensor product $ \otimes_\alpha $ is called
symmetric, if $ X \otimes_\alpha Y \stackrel{\mathrm{cb}}{=}Y \otimes_\alpha X $ is a complete isometry;
associative, if $ (X \otimes_\alpha Y) \otimes_\alpha Z
\stackrel{\mathrm{cb}}{=}X \otimes_\alpha (Y \otimes_\alpha Z) $ is acomplete isometry;
injective, if for all subspaces $ X_1 \subset X $, $ Y_1 \subset Y $ the map $ X_1 \otimes_\alpha Y_1 \hookrightarrow X \otimes_\alpha Y $ is acomplete isometry;
projective, if for all subspaces $ X_1 \subset X $, $ Y_1 \subset Y $ the map $ X \otimes_\alpha Y
\rightarrow
X/X_1 \otimes_\alpha Y/Y_1 $ is a complete quotient map;
self dual, if the algebraic embedding $ X^* \otimes Y^* \subset (X \otimes_\alpha Y)^* $ has a completely isometric extension $ X^* \otimes_\alpha Y^* \subset (X \otimes_\alpha Y)^* $.

In many applications one finds the Haagerup -tensor product. It is not symmetric, but associative, injective, projective and self dual.



Footnotes

... 30
i.e., let $ [S_{ij}] \in M_p(\mathit{CB}(X_1,X_2)) $, $ [T_{kl}] \in M_q(\mathit{CB}(Y_1,Y_2)) $, $ p,q\in{\mathbb{N}}$, then the norm of the linear operator

$\displaystyle [S_{ij} \otimes_\alpha T_{kl}]
\in M_{pq}(\mathit{CB}(X_1 \otimes_\alpha Y_1, X_2 \otimes_\alpha Y_2))
$

is estimated by

$\displaystyle \Vert [S_{ij} \otimes T_{kl}] \Vert _\mathrm{cb}
\leq
\Vert [S_{ij}] \Vert _\mathrm{cb}\Vert [T_{kl}] \Vert _\mathrm{cb}$.$\displaystyle $

Remark: This is indeed an equality.
...itemnr:ORTPaxiom4.31
(2) $ \Rightarrow $(3),(4): Condition [*] is a special case of [*]. Let $ I \in M_p(\mathit{CB}({\mathbb{M}}_p(X),X)) $, $ J \in M_q(\mathit{CB}({\mathbb{M}}_q(Y),Y)) $ be matrices, which are algebraically the the identical mappings of the vector spaces $ M_p(X)$ respectivly $ M_q(Y) $. By assumption [*] we have
$\displaystyle {
I \otimes_\alpha J
\in
M_{pq}(\mathit{CB}({\mathbb{M}}_p(X) \otimes_\alpha {\mathbb{M}}_q(Y), X \otimes_\alpha Y))}
\mbox{\quad}$
    $\displaystyle =
M_1(\mathit{CB}({\mathbb{M}}_p(X) \otimes_\alpha {\mathbb{M}}_q(Y), {\mathbb{M}}_{pq}(X \otimes_\alpha Y))),$  
    $\displaystyle \Vert I \otimes_\alpha J\Vert _\mathrm{cb}
\leq
\Vert I\Vert _\mathrm{cb}\Vert J\Vert _\mathrm{cb}= 1.$  

Now $ I \otimes_\alpha J: {\mathbb{M}}_p(X) \otimes_\alpha {\mathbb{M}}_q(Y)
\rightarrow
{\mathbb{M}}_{pq}(X \otimes _\alpha Y) $ is the shuffle-map in [*].

(3),(4) $ \Rightarrow $(2): Let $ [S_{ij}] \in M_p(\mathit{CB}(X_1,X_2)) $, $ [T_{kl}] \in M_q(\mathit{CB}(Y_1,Y_2)) $, $ p,q\in{\mathbb{N}}$, and $ S \in \mathit{CB}(X_1, {\mathbb{M}}_p(X_2)) $, $ T \in \mathit{CB}(Y_1, {\mathbb{M}}_q(Y_2)) $ the corresponding operators. By [*] holds

$\displaystyle S \otimes_\alpha T$ $\displaystyle \in$ $\displaystyle \mathit{CB}(X_1 \otimes_\alpha Y_1, {\mathbb{M}}_p(X_2) \otimes_\alpha {\mathbb{M}}_q(Y_2)),$  
$\displaystyle \Vert S \otimes_\alpha T \Vert _\mathrm{cb}$ $\displaystyle \leq$ $\displaystyle \Vert S\Vert _\mathrm{cb}\Vert T\Vert _\mathrm{cb}= \Vert [S_{ij}] \Vert _\mathrm{cb}\Vert [T_{kl}] \Vert _\mathrm{cb}.$  

We apply the shuffle map $ A :{\mathbb{M}}_p(X_2) \otimes_\alpha {\mathbb{M}}_q(Y_2)
\rightarrow
{\mathbb{M}}_{pq}(X_2 \otimes_\alpha Y_2) $ and obtain from [*]
$\displaystyle [S_{ij} \otimes_\alpha T_{kl}] = A (S \otimes_\alpha T)$ $\displaystyle \in$ $\displaystyle M_1(\mathit{CB}(X_1 \otimes_\alpha Y_1, {\mathbb{M}}_{pq}(X_2 \ot...
...ha Y_2)))
=
M_{pq}(\mathit{CB}(X_1 \otimes_\alpha Y_1, X_2 \otimes_\alpha Y_2),$  
$\displaystyle \Vert [S_{ij} \otimes_\alpha T_{kl}] \Vert _\mathrm{cb}$ $\displaystyle \leq$ $\displaystyle \Vert S \otimes_\alpha T \Vert _\mathrm{cb}
\leq
\Vert [S_{ij}] \Vert _\mathrm{cb}\Vert [T_{kl}] \Vert _\mathrm{cb}.$  

Hence $ \otimes_\alpha $ is jointly completely bounded.


Subsections
next up previous contents index
Next: cross norms Up: Tensor Products Previous: Tensor Products   Contents   Index
Prof. Gerd Wittstock 2001-01-07