next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
NumericalGodeaux :: bihomogeneousModel

bihomogeneousModel -- compute a birational model of a numerical Godeaux surface in P1xP3

Synopsis

Description

Given a numerical Godeaux surface X, the bi- and tricanonical map induce a birational map to a 1 ×ℙ3. The procedure computes the birational image of the surface Y ⊂ℙ(22,34) (and hence of the surface X) under this map. The image of the tricanonical map in 3 is a hypersurface of degree (3KX)2 - number of base points of 3KX. Hence, for a surface with a torsion group of order 5, the ideal J must contain an element of bidegree (0,7), for order 3 and 4 an element of bidegree (0,8) and for order 1 and 2 an element of bidegree (0,9).

i1 : kk = ZZ/nextPrime(32001);
i2 : s = "1111";
i3 : I = randomGodeauxSurface(kk,s,5);

o3 : Ideal of kk[x , x , y , y , y , y ]
                  0   1   0   1   2   3
i4 : J = bihomogeneousModel(I);

o4 : Ideal of kk[x , x , y , y , y , y ]
                  0   1   0   1   2   3
i5 : tally degrees J

o5 = Tally{{0, 7} => 1}
           {1, 2} => 1
           {1, 5} => 1
           {2, 3} => 1

o5 : Tally
i6 : kk = ZZ/nextPrime(32001);
i7 : t = "22";
i8 : I = randomGodeauxSurface(kk,t,4);

o8 : Ideal of kk[x , x , y , y , y , y ]
                  0   1   0   1   2   3
i9 : J = bihomogeneousModel(I);

o9 : Ideal of kk[x , x , y , y , y , y ]
                  0   1   0   1   2   3
i10 : tally degrees J

o10 = Tally{{0, 8} => 1}
            {1, 3} => 1
            {1, 5} => 1
            {2, 2} => 1

o10 : Tally

See also

Ways to use bihomogeneousModel :