Publications

Dr. Oliver Labs

14. Nullstellen von Polynomen in 2d und 3d - virtuell und real, Beiträge zum Mathematikunterricht 2012.
13. Nullstellen und Diskriminanten von Polynomen . Mit GeoGebra mehr Mathematik verstehen (Hrsg: R. Kaenders, R. Schmidt), Vieweg, 2011.
12. Terme in Bildern, Tagungsband des GDM-Arbeitskreises Geometrie (2011).
11. Algebraic Expansions: Broadening the Scope of Architectural Design through Algebraic Surfaces. Computational Design Modeling: Proceedings of the Design Modeling Symposium Berlin 2011. Springer Berlin Heidelberg, 2011. 8-16, (with Günter Barczik, Daniel Lordick).
10. Erweitertes geometrisches und skulpturales Gestaltungsvokabular für Architektur durch algebraische Flächen. Ästhetische Geometrie-Geometrische Ästhetik, Tagungsband der 6. Tagung der Deutschen Gesellschaft für Geometrie und Grafik (DGfGG), Herzogenrath : Shaker, 2010, ISBN 978-3-8322-9701-5, 46-51, (with Günter Barczik, Daniel Lordick).
9. Perplexing Beauty: The Aesthetics of Algebraic Geometry in Architecture. Proceedings of the 21st Biennial congress of the International Association of Empirical Aesthetics in Dresden (IAEA) "Aesthetics+ Design". 25.-28. August 2010, (with Günter Barczik, Daniel Lordick).
8. Algebraic Geometry in Architectural Design, to appear in eCAADe 2009, (with Günter Barczik, Daniel Lordick).
7. Surfaces with Many Solitary Points , Geom. Dedicata Vol. 141. 2009, 123-134, (with Erwan Brugallé).
6. A List of Challenges for Real Algebraic Plane Curve Visualization Software , Nonlinear Computational Geometry, IMA Volume 151, 137-164 (2009).
5. Real Line Arrangements and Surfaces with Many Real Nodes , Geometric Modeling and Algebraic Geometry (2008), 47-54, (with S. Breske and D. van Straten).
4. The Casas-Alvero conjecture for infinitely many degrees , J. Algebra, Vol. 316, No 1, 224-230, (with Hans-Christian Graf von Bothmer, Josef Schicho, Christiaan van de Woestijne).
3. Dessins d'Enfants and Hypersurfaces with Many Aj-Singularities , J. Lond. Math.Soc. (2), Vol. 74, 607-622 (2006)
2. A Septic with 99 real Nodes , Rend. Sem. Mat. Univ. Pad., Vol. 116, 299-313 (2006)
1. Illustrating the Classification of Real Cubic Surfaces , Algebraic Geometry and Geometric Modelling (2006), 119-134, (with S. Holzer).
   
© AG Schreyer