next up previous contents index
Next: Examples Up: Convexity Previous: Convexity   Contents   Index

Matrix convexity

Let $ V$ be a complex vector space. A set $ K$ of matrices over $ V$ consists of subsets $ K_n\subset M_n(V)$ for all $ n\in{\mathbb{N}}$. Subsets $ K_1\subset V$ can be considered as sets of matrices over $ V$ by putting $ K_n=\emptyset$ for $ n\geqslant 2$. More generally, if for some $ n\in N$ the corresponding set $ K_n$ is not given a priori, put this $ K_n$ as the empty set. For sets of matrices, we have the following notions of convexity:60

A set $ K$ of matrices over $ V$ is called matrix convex or a matrix convex set [Wit84b] if for all $ x\in K_n$ and $ y\in K_m$

$\displaystyle x\oplus y\in K_{n+m}$   ,

and for all $ x\in K_n$ and $ \alpha\in M_{n,m}$ with $ \alpha^*\alpha=\mathrm{1\!\!\!\:l}_m$

$\displaystyle \alpha^*x\alpha\in K_m$   .

A set $ K$ of matrices over $ V$ is called absolutely matrix convex [EW97a] if for all $ x\in K_n$ and $ y\in K_m$

$\displaystyle x\oplus y\in K_{n+m}$   ,

and for all $ x\in K_n$, $ \alpha\in M_{n,m}$ and $ \beta\in M_{m,n}$ with $ \Vert\alpha\Vert$, $ \Vert\beta\Vert\leqslant 1$

$\displaystyle \alpha x\beta\in K_m$   .

A set $ K$ of matrices over $ V$ is called a matrix cone [Pow74] if for all $ x\in K_n$ and $ y\in K_m$

$\displaystyle x\oplus y\in K_{n+m}$   ,

and for all $ x\in K_n$ and $ \alpha\in M_{n,m}$

$\displaystyle \alpha^*x\alpha\in K_m$   .

A set $ K$ of matrices over $ V$ is matrix convex if and only if all matrix convex combinations of elements of $ K$ are again in $ K$. $ K$ is absolutely matrix convex if and only if all absolutely matrix convex combinations of elements of $ K$ are again in $ K$. Here, a matrix convex combination of $ x_1$, ..., $ x_n$ ( $ x_i\in K_{k_i}$) is a sum of the form $ \sum_{i=1}^n\alpha_i^*x_i\alpha_i$ with matrices $ \alpha_i\in M_{k_i,j}$ such that $ \sum_{i=1}^n\alpha_i^*\alpha_i=\mathrm{1\!\!\!\:l}_j$. An absolutely matrix convex combination of $ x_1$, ..., $ x_n$ is a sum of the form $ \sum_{i=1}^n\alpha_i x_i\beta_i$ with matrices $ \alpha_i\in M_{j,k_i}$ and $ \beta_i\in M_{k_i,j}$ such that $ \sum_{i=1}^n\alpha_i\alpha_i^*\leqslant\mathrm{1\!\!\!\:l}_j$ and $ \sum_{i=1}^n\beta_i^*\beta_i\leqslant\mathrm{1\!\!\!\:l}_j$.

If $ V$ is a topological vector space, topological terminology is to be considered at all matrix levels: For instance, a set $ K$ of matrices over $ V$ is called closed if all $ K_n$ are closed.



Footnotes

... convexity:60
With the notation $ M(V)=\bigcup\{M_n(V)\;\vert\;n\in{\mathbb{N}}\}$, a set $ K$ of matrices over $ V$ is simply a subset of $ M(V)$. The sets $ K_n$ can be regained as $ K_n=K\cap M_n(V)$.

Then the definitions have the following form:

Let $ K\subset M(V)$. $ K$ is called matrix convex if

$\displaystyle K\oplus K\subset K$   $\displaystyle \mbox{ and $\alpha^*K\alpha\subset K$\ for all matrices
$\alpha$\ with $\alpha^*\alpha=\mathrm{1\!\!\!\:l}$.}$

$ K$ is called absolutely matrix convex if

$\displaystyle K\oplus K\subset K$   $\displaystyle \mbox{ and $\alpha K\beta\subset K$\ for all matrices
$\alpha$, $\beta$\ with $\Vert\alpha\Vert$, $\Vert\beta\Vert\leqslant 1$.}$

$ K$ is called a matrix cone if

$\displaystyle K\oplus K\subset K$   $\displaystyle \mbox{ and $\alpha^*K\alpha\subset K$\ for all matrices
$\alpha$.}$



Subsections
next up previous contents index
Next: Examples Up: Convexity Previous: Convexity   Contents   Index
Prof. Gerd Wittstock 2001-01-07