next up previous contents index
Next: Matrix extreme points Up: Matrix convexity Previous: Separation theorems   Contents   Index

Bipolar theorems

Let $ \langle V,W\rangle$ be a duality of complex vector spaces and $ K$ a set of matrices over $ V$.

The matrix polar of $ K$ is a set $ D$ of matrices over $ W$, given by64

$\displaystyle D_n=\{w\in M_n(W)\;\vert\;\mathrm{Re}\langle v,w\rangle\leqslant\mathrm{1\!\!\!\:l}_{nm}$   $\displaystyle \mbox{ for all
$m\in{\mathbb{N}}$, $v\in K_m$}$$\displaystyle \}$.

The absolute matrix polar of $ K$ is a set $ D$ of matrices over $ W$, given by65

$\displaystyle D_n=\{w\in M_n(W)\;\vert\;\Vert\langle v,w\rangle\Vert\leqslant 1$   $\displaystyle \mbox{ for all
$m\in{\mathbb{N}}$, $v\in K_m$}$$\displaystyle \}$.

Polars of sets of matrices over $ W$ are defined analogously.

We have the bipolar theorems: Let $ \langle V,W\rangle$ be a duality of complex vector spaces and $ K$ a set of matrices over $ V$.

a)
[EW97b] $ K$ equals its matrix bipolar if and only if $ K$ is closed and matrix convex and $ 0\in K_1$.
b)
[EW97a] $ K$ equals its absolute matrix bipolar if and only if $ K$ is closed and absolutely matrix convex.

The matrix bipolar of a set $ K$ of matrices over $ V$ is therefore the smallest closed and matrix convex set which contains $ K$ and 0.

The absolute matrix bipolar of a set $ K$ of matrices over $ V$ is therefore the smallest closed and absolutely matrix convex set which contains $ K$.

So we get a characterization of the unit balls of $ \mathit{MIN}(E)$ and $ \mathit{MAX}(E)$ for a normed space $ E$.



Footnotes

... by64
$ D=\{w\in M(W)\;\vert\;Re\langle v,w\rangle\leqslant\mathrm{1\!\!\!\:l}$    for all $ v\in
K$$ \}$.
... by65
$ D=\{w\in M(W)\;\vert\;\Vert\langle v,w\rangle\Vert\leqslant 1$    for all $ v\in
K$$ \}$.

next up previous contents index
Next: Matrix extreme points Up: Matrix convexity Previous: Separation theorems   Contents   Index
Prof. Gerd Wittstock 2001-01-07