Christian Bopp
Room: 428
Phone: +49681/302-2046
email: This email address is being protected from spambots. You need JavaScript enabled to view it.
Research Interests:
- Syzygies of canonical curves
- Relative canonical resolutions
- K3 surfaces
- experimental methods in algebraic geometry
Teaching:
- Teaching Assistant: Mathematik für Informatiker 1 Winter 13/14
- Teaching Assistant: Mathematik für Informatiker 2 Summer 14
- Teaching Assistant: Analysis 1 Winter 14/15
- Teaching Assistant: Analysis 2 Summer 15
- Teaching Assistant: Analysis 3 Winter 15/16
- Teaching Assistant: Funktionentheorie Summer 16
- Teaching Assistant: Algebraic Geometry and Computeralgebra Winter 16/17
- Teaching Assistant: Mathematik für Naturwissenschaftler 2 Summer 17
- Teaching Assistant: Algebra- Gruppen und Körper Winter 17/18
- Lecturer: Elementare Zahlentheorie Summer 18
Publications:
- C. Bopp, M. Hoff, The relative canonical resolution: Macaulay2-package, experiments and conjectures, submitted
- C. Bopp, F.-O. Schreyer, A version of Green's conjecture in positive characteristic, submitted
- C. Bopp, Canonical curves, scrolls and K3 surfaces, Ph.D thesis, 2017
- C. Bopp, M. Hoff, Moduli of lattice polarized K3 surfaces via relative canonical resolutions, submitted
- C. Bopp, M. Hoff, Resolutions of general canonical curves on rational normal scrolls, Archiv der Mathematik, 2015, DOI: 10.1007/s00013-015-0794-x
- C. Bopp, Syzygies of 5-gonal Canonical Curves, Doc. Math. 20 (2015), 1055-1069.
- Master Thesis: Syzygies of k-gonal canonical curves
- Bachelor Thesis: Liaisontheorie und die Konstruktion von glatten Raumkurven
Macaulay2-Packages and Scripts:
kGonalNodalCurves.m2 | Documentation |
This M2 package is part of my Master Thesis. It includes routines for the computation of nodal k-gonal canonical curves and the computation of single Betti numbers |
fiveGonalFile.m2 | - |
M2-script that verifies some of the statements in "Syzygies of 5-gonal Curves". |
RelativeCanonicalResolution.m2 | Documentation | Computation of relative canonical resolution and Eagon-Northcott type complexes. |
relativeCanonicalResolutionsAndK3Surfaces.m2 | - | |
RandomCurvesOverVerySmallFiniteFields.m2 | Documentation | construction of canonical curves of genus g<=15 over fields of very small characteristic. |
Experiments concerning relative canonical resolutions:
The webpage (click here) lists all experimental results concerning the shape of relative canonical resolutions done with the Macaulay2-package "RelativeCanonicalResolution.m2".
Education:
- 12/2017 - 10/2018: Postdoc at the Universität des Saarlandes
- 05/2013 - 12/2017: Ph.d student at the Universität des Saarlandes
- 04/2012 - 04/2013: Master student at the Universität des Saarlandes
- 09/2008 - 04/2012: Bachelor student at the Universität des Saarlandes